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ABSTRACT

As part of the Aircraft Battle Damage Repair
(ABDR) Project, CNA analysts performed research into
finding an appropriate model for determining ABDR
spares requirements. The analysis focuses on the rela-
tive performance of four spares requirements models,
given uncertainties associated with predicting battle
damage rates.
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SUMMARY AND RESULTS OF ANALYSIS

INTRODUCTION

As part of the Aircraft Battle Damage Repair (ABDR) Study, CNA analysts
performed research into finding an appropriate model for determining ABDR
material requirements. This research memorandum documents the analysis and
recommends a specific model for determining ABDR spares requirements.

This section of the paper contains a nontechnical discussion of the analysis,
a summary of the results, and the conclusion of the analysis. The next section
contains technical details, including a discussion of the mathematics behind the
analysis and precise definitions of the spares models and probability distributions
used in the analysis. Detailed results of the analysis are presented in appendix A.
Two of the spares models considered in this analysis had a surprising relationship;
Appendix B contains a detailed example that helps to illustrate the reasons for
this. A listing of the major computer program used in the analysis is contained
in appendix C.

BACKGROUND

The overall modeling process for ABDR material requirements may be broken
into two parts: (1) the development data bases for predicting battle damage
rates, and (2) development of a spares model to develop ABDR spares lists from
these data bases. Current Navy planning calls for these data bases for predicting
battle damage rates to be developed by the Naval Weapons Center (NWC) and
the Naval Air Development Center (NADC). Essentially, NWC vulnerability and
susceptibility models will be used to model aircraft damage; the ABDR material
required to repair each type of damage incident is determined in conjunction with
NADC data bases. The end result of the process will probably be a collection
of component or part-level battle damage rates. Following the development of a
data base for predicting battle damage rates, NADC will use a spares model to

* develop ABDR allowance lists.

CNA's research effort focused only on the spares model and did not consider
the methods used to develop the data base for predicting battle damage rates.



The objective of the research effort was to find a spares model appropriate for
determining ABDR material requirements.

There are at least two striking differences between the types of failures expe-
rienced normally in peacetime and those associated with battle damage: uncer-
tainty and dependence.

The peacetime failure rates from which Aviation Consolidated Allowance
Lists (AVCALs) are developed are based on actual usage data. In determining
ABDR requirements, planners must use predicted battle damage rates rather
than peacetime usage data; of course, there are not any relevant, actual battle
damage data for use in this process. The Navy's plans to use vulnerability and
susceptibility models to develop predicted battle damage rates seems reasonable;
indeed, an alternative method for developing predicted battle damage rates is
not evident. However, regardless of how detailed and accurate the models are
from an engineering standpoint, the damage-rate predictions will be based in
large part on the following information:

9 Educated guesses for model parameters, particularly descriptions of threats,
tactics, and operational objectives

* Intelligence information

* Historical data from conflicts in which weapons, tactics, and threats were
different from those likely to be experienced in a future conflict.

Hence, there is more uncertainty associated with battle damage rates than with
empirical, peacetime usage data used to develop AVCAL requirements. This
uncertainty should be considered when selecting a model for ABDR material
requirements.

Peacetime spares models assume independence of failures. That is, given two
distinct items on the aircraft, the probability that item A fails during a flight is
independent of the probability that item B fails during the flight. In general, the
assumption of the independence of battle damage "failures" is not easy to accept.
Indeed, it is clear that the physical proximity of two items is important, and if
two items are located close together, they will tend to be damaged together.

Consider the following example of the effect of the independence assumption
in the battle damage situation. Assume two parts, A and B, are both required to
have a flyable aircraft. Also assume that parts A and B have identical predicted
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battle damage rates, and part A costs ten times as much as part B. A readiness-
based spares model, analogous to the readiness-based AVCAL model currently
planned for use in developing F-18 AVCALs, trades off cost against improvements
in readiness when computing allowance levels. This type of spares model also
assumes the independence of failures. The readiness-based model would tend to
stock part B to a higher level than part A. Just for the sake of this example,
suppose ten items of part B are stocked and four items of part A are stocked.
Assume that parts A and B are located next to each other in the aircraft, so that
part A and part B are always damaged together. In this case, six extra items of
part B are useless, because any aircraft needing the replacement of part B also
requires the replacement of part A.

Clearly, the assumption of independence in a peacetime spares model must
be carefully considered if the model is adapted for ABDR spares.

Any model for developing spare parts requirements must use predicted battle
damage rates. As discussed above, actual battle damage rates may be different
from the predicted rates; moreover, the actual rates may not satisfy assumptions
of independence built into certain spares models. Most spares models will do
well in determining requirements when the predicted and actual damage rates
are equal, but what happens if the predicted rates and actual damages rates are
different? The following example, depicted in figure 1, illustrates the idea that
ABDR sparing models should have the flexibility to provide support under the
uncertainty assumption about the battle damage rate planning factors. Suppose
two different models are used to form ABDR spare parts inventories, A and B
respectively, from the same set of predicted damage rates. Suppose stockpile
A performs much better than stockpile B when the actual damage rates and
the predicted damage rates are equal, but as actual damage rates and predicted
damage rates become further apart, stockpile B's performance becomes better
than stockpile A's. Stockpile A, optimized for the situation in which predicted
and actual damage rates are equal, is not flexible enough to cope well with
different damage rates. Stockpile A performs well only in a specific, narrow
setting. Stockpile B, designed for flexibility, performs reasonably well in a wide
range of situations but is not the optimal model when predicted and actual
damage rates are equal.

3.
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NONTECHNICAL DEFINITIONS OF SPARES MODELS

Four alternative spares models were considered in this analysis: the DBS-
Part, RBS-Part, DBS-Damage Incident, and RBS-Damage Incident models.1

Given a list of candidate parts for inclusion in a spare parts stockpile, each

b spares model is designed to develop a stock level for each candidate part suffi-
cient to cover demands over a user-specified period of time under the assumption
of no resupply or repair of the damaged part.

The list of candidate parts does not necessarily include all parts on the air-
craft. For example, the Navy may decide to to include only items that are not
normally required to support peacetime flight operations; in particular, AVCAL
items would probably not be included in an ABDR spares stockpile. In the
following analysis, "damage" refers to the need to replace a candidate part on
the aircraft. Battle damage not leading to a demand for a replacement part is
treated as "no damage" by these models. In particular, damage requiring the
replacement of "noncandidate" parts is treated as "no damage" by the spares
models.

The DBS-Part model is a direct adaptation of the demand-based Aviation
Supply Office (ASO) spares model currently used to develop AVCALs for most
aircraft types. The stock level of a part under this rule depends only on the
predicted damage rate for the part. Assitming damage incidents are described
by a binomial distribution, just enough parts are stocked to ensure that the
probability of a stockout is no more than 10 percent.

The RBS-Part model is analogous to the readiness-based spares model used
by ASO to develop AVCAL lists for the F-18. The stock level of a part depends
on the unit cost of the part as well as the predicted damage rate of the part.
Essentially, the part stockpile is built part by part, where at each step, one unit
of the item offering the largest gain in "readiness" per unit cost is added. The
process is stopped when a specified cost goal is reached. In this analysis, when
compared to the DBS models, the total cost for the stockpile produced by RBS-
Part was constrained to be just below the cost of the corresponding DBS-Part
stockpile. In other parts of the analysis, other cost goals were used; in each case,
the cost goal used is clearly indicated in this report.

1. DBS stands for demand-based sparing, and RBS stands for readiness-based sparing. DBS-P,
RBS-P, DBS-DI, and RBS-DI will be used to denote the DBS part, RBS part, DBS damage
incident, and RBS damage incident models, respectively.
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Both of the spares models described above assume independence between part
damage rates. As discussed earlier, this assumption does not seem reasonable
when applied to battle damage. The "damage incident" models are designed to
replace the unacceptable assumption of independence between part damage with
the more acceptable assumption of independence between damage incidents.

The DBS-Damage Incident model is a direct adaptation of the DBS-Part
model, where damage incidents play the role of "parts" in the DBS-Part model.
In effect, "bundles" of parts, as defined by the dependence among parts in battle
damage incidents, would be carried in the ABDR part stockpile. For example,
suppose there are two damage incidents: incident A requires parts 1 and 2, while
incident B requires parts 2 and 3 for repairs. Suppose the probability of expe-
riencing more than four of incident A is less than 10 percent, and experiencing
more than three of incident B is less than 10 percent. Then the "damage incident
stockpile" is four of incident A and three of incident B. In terms of parts, this
corresponds to the following stockpile: four of part 1, seven of part 2, and three
of part 3.

In an analogous manner, the RBS-Damage Incident model is adapted from
the RBS-Part model.

COMPARISON OF THE ALTERNATIVE SPARES
MODELS

This analysis is based on the premise that predicted damage rates and actual
damage rates are likely to be different, and a spares model offering flexibility (e.g.,
model B in figure 1) is preferable to a spares wodel offering narrow optimality
(e.g., model A in figure 1). The flexibility of the four alternative spares models
was investigated over a range of three possible relationships between predicted
and actual damage rates:

" Full confidence: Actual damage rates are the same as the predicted damage
rates.

" No confidence: No relationship or correlation exists between predicte' and
actual damage rates.

" Some confidence: Predicted rates are close to the actual damage rates.

6



A precise definition of the "confidence factor" parameter used in this analysis is
given in the technical section of this paper.

The models were compared in terms of a random variable CANN, roughly cor-
responding to the number of cannibalized aircraft needed to meet the deficiencies
in stockpiles of ABDR spares. A simple illustration of the way CANN is calcu-
lated is given in table 1.

TABLE 1

EXAMPLES OF CALCULATING CANN

Part I Part 2
Example
number Stocked Demanded Stocked Demanded CANN

1 3 57 6 2

2 3 2 7 5 0

3 3 7 7 12 5

Initial work was based on a list of 23 major structural assemblies for the F-14
that the Naval Air Systems Command (NAVAIR) is considering as candidates
for ABDR spares stockpiles. A set of 30 damage incidents was hypothesized,
and the performance of the four spares models in this situation was analyzed.
At later stages of the analysis, more general situations were considered in which
both the cost of ABDR spares and the list of parts associated with each damage
incident were described by probability distribution functions. The generalized
cost distribution used was derived from cost data for major aircraft assemblies
provided by NAVAIR. The generalized distributions of part-to-damage incidents
were designed to allow the parameterization of the level of dependence between
part damage rates.

The numbers of parts (23) and damage incidents (30) used in the initial work
*on F-14 major assemblies were retained throughout the analysis. Because of

computer limitations, it was not feasible to extend the analysis to substantially
larger numbers of parts and damage incidents. This was not judged to severely
limit the generality of the analysis, because a wide range of damage rates and
distributions of part-to-damage incidents were considered in the comparison of
the spares models.

7



A sample of results is contained in figure 2, and tables 2 and 3 Figure 2
compares the probability distributions of CANN. Tables 2 and 3 show a more
direct comparison between the spares models. Model A is said to be better than
model B if model A leads to fewer "cannibalized aircraft" than model B; that
is, if CANNB - CANNA > 0. These sample results correspond to a stockpile
of major aircraft assemblies and are based on a support period of 3,000 sorties
without resupply, an overall damage rate of approximately 0.008 per sortie, and
"some confidence" in the predicted damage rates. In figure 2 and table 2, the cost
of the RBS stockpile is limited to the cost of the corresponding DBS stockpile;
in this comparison, the cost of a Damage Incident stockpile is higher than the
cost of the Part stockpile. Table 3 shows an equal-cost comparison between the
RBS models.

TABLE 2

SAMPLE RESULTS: COMPARISON OF
FOUR SPARES MODELS

The "probability Model A performs better than
Model B" is Prob{CANNB - CANNA > 0}.

Parameters used in this comparison
RBS-P cost goal: DBS-P cost
RBS-DI cost goal: DBS-DI cost
Some confidence in predicted damage rates

DBS-P versus RBS-P DBS-P versus DBS-DI

Prob. DBS-P is better: 0.11 Prob. DBS-P is better: 0.01
Prob. RBS-P is better: 0.41 Prob. DBS-DI is better: 0.29

RBS-P versus DBS-DI RBS-P versus DBS-DI

Prob. DBS-P is better: 0.06 Prob. RBS-P is better: 0.28
Prob. RBS-DI is better: 0.48 Prob. DBS-DI is better: 0.21

DBS-P versus RBS-DI RBS-DI versus RBS-DI

Prob. RBS-P is better: 0.06 Prob. DBS-DI is better: 0.12
Prob. RBS-DI is better: 0.24 Prob. RBS-DI is better: 0.34

1. Tables 2 sad 3 are taken from "series 5" of appendix A.
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TABLE 3

SAMPLE RESULTS: COMPARISON OF
EQUAL-COST GOALS OF RBS MODELS

The "probability Model A performs better than Model B"
is Prob{CANNB - CANNA > 0}.

Parameters used in this comparison
RBS-P cost goal: slightly higher than DBS-DI cost
RBS-DI cost goal: slightly higher than DBS-DI cost
Some confidence in predicted damage rates

RBS-P versus RBS-DI

Prob. RBS-P is better: 0.23
Prob. RBS-DI is better: 0.05

The relationship between the RBS and DBS models, illustrated in figure 2
and table 2, held consistently among the situations studied. The RBS (Part or
Damage Incident) approach was consistently better over all three levels of con-
fidence in predicted battle damage rates than the corresponding DBS approach.
The results indicate that the readiness-based approach produces a better spares
stockpile than the demand-based approach.

Recall that in the comparison in table 2, the RBS-Part cost goal was set

so that the cost of the RBS-Part stockpile was slightly below the cost of the
DBS-Part stockpile. It is always true that the cost of the DBS-Damage Incident
stockpile will be greater than the cost of the DBS-Part stockpile. Hence, in the
table 2 comparison, the DBS-Damage Incident stockpile is higher in cost than
the RBS-Part stockpile. The relationship between the DBS-Damage Incident and
RBS-Part models illustrated in table 2 is surprising in view of this relative cost
relationship. The RBS-Part model generally performed better than the DBS-
Damage Incident model when predicted damage rates were not good predictions
of actual damage rates; however, the opposite was true when the predicted dam-
age rates were good predictions of the actual damage rates. Hence, the RBS-Part
stockpile generally performed better than the more expensive DBS-Damage In-
cident stockpile. This result emphasizes the flexibility of the readiness-based
approach.

10



Recall that in table 2, the RBS-Part and RBS-Damage Incident models had
different cost goals, making it difficult to compare these two models. To differ-
entiate their relative value, analysts made a number of equal-cost comparisons
between the RBS-Part and RBS-Damage Incident model. Because of the high
cost of some parts, even when the two models are run to equal-cost goals, there
will probably be some (relatively small) difference in the cost of the stockpiles.

In the equal-cost comparison illustrated in table 3, the cost goals were set so
that so that the RBS-Part stockpile cost would, on average, fall slightly below the
cost of the RBS-Damage Incident model. In effect, this gives a slight advantage to
the RBS-Damage Incident model. Table 3 contains typical results; the RBS-Part
model generally performed better than the RBS-Damage Incident model in equal-
cost comparisons. In fact, the RBS-Damage Incident had better performance
only in a few cases: a subset of the comparisons in which the damage rates were
high and there was little correlation between predicted and actual damage rates.

The excellent performance of the RBS-Part model was unexpected; it was
anticipated that the independence assumption in the RBS-Part model would re-
sult in poor performance relative to the RBS-Damage Incident model. From the
way the cost goals of table 3 were set, the RBS-Part stockpile costs slightly less
on average; hence, the better performance is not due to a difference in cost. Rel-
ative to a DBS model, the RBS model will reduce the stock level of expensive
items and use the savings to increase stock levels of less expensive parts. In this
way, the probability of experiencing stockouts of inexpensive items is "greatly"
reduced at the expense of "slightly increasing" the probability of stockouts for
the expensive items. The RBS-Damage Incident model appears to carry this ten-
dency of trading off expensive items for inexpensive items a bit too far. Relative
to the RBS-Part model, the RBS-Damage Incident model appears to experience
slightly more stockouts for expensive items and slightly fewer stockouts for inex-
pensive items. However, the RBS-Part model also does well in meeting demands
for the inexpensive items. The overall effect is that the RBS-Part model gen-
erally performs slightly better than the RBS-Damage Incident model. A more
detailed example is provided in appendix B.

Appendix A contains Prob{CANNA - CANNE > 0, as in tables 2 and 3, for
the different situations considered in the analysis. While graphs corresponding
to figure 2 were also considered in the analysis, they did not add information and
are not included in appendix A.
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CONCLUSION

Among the four spares models considered in this analysis, the RBS models

provide better performance than the corresponding DBS models. When RBS-
Part and RBS-Damage Incident are used to equal-cost goals, the RBS-Part model
performs better overall. In addition, RBS-Part is an easier model to use because
damage rates and similar data are processed at the part level rather than the
damage-incident level. The analysis indicates that the RBS-Part model should
be adopted for determining ABDR material requirements.

12



TECHNICAL DETAILS

In this section, a number of technical details are given, including a discussion
of the mathematics used in the analysis and precise definitions of the spares
models and distribution functions used in the analysis.

MATHEMATICS

The underlying events in the mathematical formulation of the ABDR spares
model problem are damage incidents. In terms of the NWC models used to study
aircraft vulnerability and susceptibility, each damage incident may correspond to
a specific "shotline" in a vulnerable area model, or to a specific missile endgame
model result. (See [1] for a discussion of these models.) In real-world terms, the
set of damage incidents is the set of possible outcomes of a combat sortie. For
mathematical convenience, the outcome in which no parts are required, either
because no damage is experienced or none of the candidate parts are needed for
repairs, will always be included in the set of damage incidents. One assumption
made with respect to damage incidents is that the damage incident experienced
on each sortie is independent of the damage incidents experienced on other sor-
ties.

Assume there is a set of np parts that are candidates for an ABDR stockpile,
and assume that there is a set of nd distinct damage incidents. The following
notation is used throughout this section to denote ABDR-related factors over
some period of time T encompassing N combat sorties:

" The vectors 0 and f denote (0, 0,.-., 0) and (1,1,... 1), respectively. Vec-
tor addition, scalar multiplication, and "dot product" (denoted .) have the
usual meaning. Two vectors satisfy V" < W- if the inequality (F)i !5 (Wt)i
holds for the i components of the vectors.

* The vector -' describes predicted damage rates. The i-th component de-
notes the probability that damage incident i will be experienced on a sortie.
Recall that the no-damage incident is included with appropriate rp and note
that r-. j" = 1.

13



" The vector r. describes actual damage rates. These are damage rates that
will be experienced in combat and may be different from the predicted
battle damage rates.

" The vector k describes the number of each type of damage incident experi-
enced over a period of time T. The i-th component (k)i denotes the number
of times damage incident i was experienced. The probability distribution
of k after N combat sorties is the multinomial distribution:

Prob{k = i after N sorties} = M(i,'.*,N)

" The vector Di specifies the list of parts required to repair damage incident
i. For example, if DA = (1, 0,1,.- .), then one of part number 1, one of part
number 3, and so on, are needed to repair damage incident i. This analysis
assumes that A < 1

" The vector d describes the number of each type of part demanded over
the time period T. Given the vector kc describing the damage incidents
experienced this period, (d)i = E=7I(Dj)j(k)j. Note that d and r7 are

dependent random vectors; and dalso depends on the number of combat
sorties N, and the part-to-damage incident vectors D.

" The vector a' describes stock levels. The i-th component (i)i denotes the
stock level of item i in the ABDR stockpile. Similarly, F describes the
costs of the ABDR parts. The stock level produced by a spares model is
a function of the predicted damage rates, the number of combat sorties
N to be supported by the stockpile, cost, and the part-to-damage-incident
vectors D; in functional notation, F = al,, N, C- D).

Measure of Effectiveness Used To Compare Spares Models

The models for spare parts requirements were compared in terms of a random
variable CANN, computed by comparing the list of parts demanded to the list
of parts stocked. Let (ai) be the stock level of part i, and let (d)i be the demand
for part i. Assuming no resupply, max{0, (d)i - (ij} is the number of stockouts
for part i. The random variable

CANN = max{max{0, (d)i - (s)j}I all i}

14



is analogous to the number of cannibalized aircraft required to fill the stockouts.
The notations CANNA and CANNB are used to represent CANN under the
sparing models A and B, respectively. The random variable CANNA - CANNB
is used to directly compare spares model A with spares model B.

It is convenient to think of CANN as a function of the stock level, demand for
parts, predicted and actual damage rates, the number of combat sorties N, cost,
and the part-to-damage-incident vectors D; in functional notation, CANN =
CANN(-, d, r, -, N, -, D). Also, it is convenient to think of the variables of
interest as belonging to a probability space X = (- d, r-,, N, c, D)} equipped
with a probability measure 1A. In this space, N, c, and D are all independent
of other variables; I is completely determined by r7, 4, and N; and there are
dependencies between d, r-, and r. This allows certain quantities of interest in
the analysis, in particular Prob{CANNA - CANNB > 0, to be represented as
an integral

1= fdi

for some specific function f. If f is defined by

-.. D-' {1 ifCANN(.)A-CANN(.)>0

f(g, d, r,, p, N, c, D) 0 otherwise

then I = Prob{CANNA - CANNB > 0}.

The integral I introduced above is difficult to calculate because the number
of numerical calculations needed to compute the exact value of the integral grows
rapidly with the number of damage incidents and parts considered. Stochastic
integration methods were selected as the easiest way of estimating the integral.
Justification of the techniques used are given below. A good general reference
on stochastic integration is [2].

Estimates of the quantities Prob(CANNA - CANNB > 0} were made over
a variety of damage rates, costs, and part-to-damage-incident tables, each com-
bination giving rise to a distinct probability measure p. The parameters and
distribution functions used to describe damage rates, costs, and part-to-damage-
incident tables are given later in this section. The estimates are reported in
appendix A.
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Stochastic Integration

The integrals considered in this analysis are of the form I = fX fdp, where
f : X -* {0, 1} and p is a probability measure on X. The statistic 0,, is defined

by 0. - E=I f(z), where {z, : i = 1,... , n} is an independent random sample
of size n from X.

The expected value of the statistic On is

E(O.) =fdIL=I

and the variance of the statistic is

V(On) = -(f fdp - 2)

By Chebyshev's inequality, and using the facts that I - 12 < 1/4 on [0,1] and
f 2 =f,

Prob{10,, - Il _: 4_ 4V(O,)

(f f2d- 2)

1 1
en X e~

-- .(I- 1') :5 _2

This allows one to determine the number of samples required to give a specified
level of accuracy to the estimate On. The sample size used in all estimates reported
in this analysis was n = 500, ensuring for example that

Prob{ , - Il > 0.1} < 0.05;

that is, 95 percent confidence that the estimate is within 0.1 of the true value.
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Numerical Calculations

Two separate computer programs were written to carry out the stochastic

integration technique described above. The first program generates 500 random
samples from the probability space X. For each of the random samples, four
values of CANN, one for each of the four spares models, are calculated and
written to an intermediate file. A listing of this program, corresponding to the
most general definition of the probability space X considered, is included in
appendix C. The second computer program reads values of CANN from the

intermediate file, then computes and averages the corresponding values of the
function f.

An outline of the procedure used to generate a single random sample from
the probability space X = (9', 7. r, 7;p, N, , B)} is given below:

" N: In all of the situations considered, the number of sorties N was held
constant.

* : In some situations considered, the cost vector F was constant. In other
situations, a random vector was drawn from the (independent) probability
distribution for cost.

* D: In some situations considered, the matrix describing the list of parts
needed to repair a damage incident was constant. In other situations, a ran-
dom matrix D was drawn from the (independent) probability distribution
describing part-to-damage-incident relationships.

*" : A random vector describing the predicted damage rates was drawn from
the probability distribution for 7;.

" ra: The predicted and actual damage rates are not necessarily independent.
After a specific predicted damage rate vector ri was drawn, an actual dam-
age rate vector ra was drawn from the conditional distribution function of
r, given rf.

" d. The random vector k describing damage-incident experience is depen-
dent on the actual damage rate r. After a specific actual damage-rate
vector ri was drawn, a damage-experience vector kc was drawn from the
conditional distribution function of k, given r7 and N. The list of parts
required, d, was then computed directly from k using the part-to-damage-
incident matrix D.
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* .: The vector of stock levels - was computed directly from the cost vector
, N, and the vector of predicted damage rates - using the appropriate

spares model algorithm.

DEFINITION OF SPARES MODELS

Four different spares models were evaluated; each model is defined below.

In the following,

k

B(k, p, n) E (;) ji(1 - P -
j=0

denotes the binomial distribution function. Each model assumes that the ABDR
spares are to cover demands over a fixed period of time, that is, a fixed number
of combat sorties, with no resupply or repair of damaged parts.

The DBS-Part model is a direct adaptation of the supply-oriented model
traditionally used in developing AVCALs. The stock level of part i is the first
integer k satisfying B(k,ri, N) > 0.9, where ri = El 1 (Dj) (rp)j is the predicted
damage rate for part i and N is the number of combat sorties. Note that the
stock levels computed for each part are independent of the stock levels computed
for other parts.

The RBS-Part model is analogous to the readiness-based spares model used
by ASO. Given a stock level ., the probability that there are no stockouts over
a period of N combat sorties is taken as a measure of the readiness provided by
the stockpile. Because independence is assumed in this model, the probability of
no stockouts may be written

H B((s-)j, rJ,N)

An inductive procedure is used to build a stock level from a starting position
= 0. At each step in the process, one unit of the item offering the largest

gain in "readiness" per unit cost is added to the stockpile. More precisely, let 4

describe the stock level after step n. Pick M to satisfy
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,B((sj) + bik, rj, N) - INI B((S)), r )

1j B((I) N)Mr3 N

(C3k j=1 j=1

for all k =1,...,nP where

1 ifi=j
0 otherwise

Let sn41 = s + (b1M," ",M). The process is halted when a specified cost goal
is reached.

Both of the above spares models assume independence between part "fail-
ures." This assumption does not seem reasonable when applied to battle damage.
The raw output of the NWC/NADC modeling effort will in effect be stated in
terms of damage incidents and must be condensed into part-level damage rates.
Moreover, it seems more reasonable to assume the independence of damage in-
cidents than the independence of part damage. This motivates the following
alternative spares models.

The DBS-Damage Incident model is a direct adaptation of the DBS-Part
model, where damage incidents rather than demands for parts are monitored. In
other words, each damage incident corresponds to a "bundle" of parts needed to
repair that particular damage. Enough bundles of parts are stocked to ensure
that demands for that particular bundle are met with at least a probability of
90 percent. More precisely, the "stock" level of damage-incident i is the first
integer k where B(k, (r )j, N) > 0.9. The damage-incident "stock levels" Sd are
converted to part stock levels g via = ", (Sd)i Di.

In an analogous manner, the RBS-Damage Incident model is adapted from
the RBS-Part model.
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DAMAGE RATE, COST, AND PART-TO-DAMAGE-
INCIDENT DISTRIBUTIONS

This section defines the damage-rate distributions, part-to-damage-incident
distributions, and cost distributions used in the analysis.

F-14 Assemblies

Initial work began with a list of 23 candidate major structural assemblies for
ABDR on the F-14 and a hypothetical distribution of the assemblies among 30
distinct damage incidents. The list of assemblies and costs, listed in table 4, were
provided by NAVAIR. The part-to-damage-incident table is given in table 5.

Generalized Part-to-Damage-Incident Distributions

Computer limitations would not allow the c, nsideration of substantially higher
numbers of parts and damage incidents; hence, 23 parts and 30 damage incidents
were used throughout the analysis. However, it was relatively easy to consider
more general part-to-damage-incident distributions than the hypothetical F-14
assemblies distributions shown in table 5.

Given a fixed number r E (0, 1), the following procedure was used to generate
a part-to-damage-incident matrix D. For each fixed damage incident, a random
number was drawn for each part j to determine if part j was needed to repair
the damage incident. The probability that part j was needed was exactly r. If,
at the end of this process, at least one part was needed to repair the damage
incident, the list of parts just selected was accepted. If no parts were selected,
the (empty) list of parts was rejected and the selection process was repeated.

The probability distribution function corresponding to the procedure above
is given by the following function:

Prob{number of parts included > 4l

1 - B(z - 1,r,23)= F(r,z) = 1-(r,3
2 - B(0,r,23)
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TABLE 4

MAJOR ASSEMBLIES AND COSTS
FOR CANDIDATE F-14

Cost
Major assembly (thousand $)

Outer wing panel (left) 617
Outer wing panel (right) .617
Aileron (left) 780
Aileron (right) 780
Leading edge flap (left) 28
Leading edge flap (right) 28
Trailing edge flap (left) 21
Trailing edge flap (right) 21
Horizontal stabilizer (left) 445
Horizontal stabilizer (right) 445
Vertical tail (left) 106
Vertical tail (right) 132
Rudder (left) 42
Rudder (right) 42
Main landing gear (left) 43
Main landing gear (right) 109
Engine inlet assembly (left) 30
Engine inlet assembly (right) 30
Canopy 143
Windscreen 28
Nose landing gear 92
Afterburner assembly 11
Radome 35
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TABLE 5

HYPOTHETICAL F-14 DAMAGE INCIDENTS

Damage
incident number Parts requiring replacement

1-23 One for each of the 23 candidate parts

24 Outer wing panel (left)
Aileron (left)
Leading edge flap (left)
Trailing edge flap (left)

25 Outer wing panel (right)
Aileron (right)
Leading edge flap (right)
Trailing edge flap (right)

26 Canopy
Windscreen

27 Main landing gear (left)
Engine inlet assembly (left)

28 Main landing gear (right)
Engine inlet assembly (right)

29 Horizontal stabilizer (left)
Vertical tail (left)
Rudder (left)
Afterburner assembly

30 Horizontal stabilizer (right)
Vertical tail (right)
Rudder (right)
Afterburner assembly
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Each of the 23 candidate parts has an equal probability of being one of the
z parts selected for a damage incident. Three different values of the parameter
r are used in the analysis. The parameter value r = 0.023 was selected to
match with the hypothetical F-14 assemblies distribution shown in table 5: 23
percent of the damage incidents include two or more parts. The parameter value
r = 0.11 was selected so the probability of having more than two parts included
in a damage incident was 50 percent. The parameter value r = 0.2 was selected
so the probability of having more than four parts included in a damage incident
was 50 percent. On average, each part is included in 1.6 damage incidents when
r = 0.023, 3.5 damage incidents when r = 0.11, and 6.0 damage incidents when
r = 0.2.

Generalized Cost Distribution

The following distribution of cost was used to generalize the cost distribution:

C

4t0 < t <0.2

0.8 0.2 < t < 0.5
0.4t+0.6 0.5<t<1

This distribution was chosen to match reasonably well with the distributions
of major aircraft assembly costs provided by NAVAIR. Figure 3 compares the
cost distribution function with the actual distribution of major aircraft assembly
costs for the A-6, F-14, and F-18.

Damage-Rate Distributions

A two-parameter distribution of predicted and actual damage rates was used
in this analysis. The "maximum DI rate" parameter S defined the range of
possible damage rates; the "confidence factor" C defined the relationship between
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FIG. 3: GRAPH OF COST-DISTRIBUTION FUNCTION
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the predicted and actual damage rates. Precisely, the range of predicted (r.) and
actual (r.) damage rates for each of the 30 damage incidents actually requiring
a part was uniformly distributed in the set

{(rp, r.) :0 < rp : S and Crp < r. < Crp + S(1 - C).

A parameter value C = 0 corresponds to "no confidence," a value C - 0.5 corre-
sponds to "some confidence," and a value C = 1 corresponds to "full confidence."

Figure 4 displays pictorially the effect of the confidence-factor parameter and
the maximum DI rate parameter. The maximum DI rate parameter S sets the
maximum allowable damage rate. For example, if S = 0.005, the probability of
experiencing a specific damage incident on a sortie is no more than 0.005. Note
that C = 1 (full confidence) forces the predicted and actual rates to be equal, and
that the predicted and actual rates are unrelated when C = 0 (no confidence).
When C = 0.5 (some confidence), the actual damage rate and predicted damage
rate both fall within an interval of width s2'
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Step 1: Pick predicted damage rate r in interval [0, S1.

Step 2: Pick actual damage rate r. The range of permitted values for r. is shaded below.

No confidence Some confidence Full confidence
(C= O) (C- 0.5) (C. 1)

,a
I I I I I

0 S 0 t s 0 ts

Srp rp

FIG. 4: EFFECT OF THE CONFIDENCE-FACTOR PARAMETER
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APPENDIX A

DETAILED RESULTS

This appendix contains comparisons of the four ABDR spares requirements
models over a wide range of parameter and distribution values. A total of eight
different combinations of maximum DI rate, part-to-DI distribution, and cost
distribution were considered in the analysis, as listed in table A-I. The term
"series," defined by this table, is used to refer to these combinations. Each of the
tables that follow compares two of the models in terms of the statistic "proba-
bility Model A performs better than Model B." More precisely, this statistic is
Prob{CANNB - CANNA > 0}.

The relative costs of the stockpiles associated with the spares models must
be taken into account when comparing the spares models. The cost of the DBS-
Damage Incident stockpile is always higher than the cost of the corresponding
DBS-Part stockpile. The cost associated with the RBS stockpile is indicated at
the top of each table. For most of the comparisons, the cost of the RBS stockpile
was forced to remain slightly below the cost goal: the RBS algorithm was halted
when the addition of the next part would exceed the cost goal; this last part was
not added to the stockpile. This rule was used in all of the following comparisons
except the equal-cost comparisons of the RBS-Part and RBS-Damage Incident
models (tables A-8 and A-9).

In the equal-cost comparisons between the RBS-Part and RBS-Damage In-
cident models, the cost of the RBS stockpiles was allowed to exceed the cost
goal slightly: the RBS algorithm was halted when the addition of the next part
would exceed the cost goal; this last part was added to the stockpile. This case
is identified in the following tables as: "RBS cost is slightly higher than the cost
goal." The "slightly higher" rule causes the RBS-Damage Incident stockpile cost
to be slightly higher than the RBS-Part cost on average. The other rule causes
the RBS-Part stockpile cost to exceed the RBS-Damage Incident cost on average.
The "slightly higher" rule was selected for the equal-cost comparisons of the RBS
models because it gives the RBS-Damage Incident model a slight advantage.
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TABLE A-i

SERIES COMPARED

Max. DI Part-to-DI Cost
Series rate dist. dist.

1 0.0005 F14 Assem. F14 Assem.
2 0.005 F14 Assem. F14 Assem.
3 0.0005 F14 Assem. Genl.
4 0.005 F14 Assem. Genl.
5 0.0005 Genl., r = 0.023 Genl.
6 0.005 Genl., r = 0.023 Genl.
7 0.0005 Genl., r = 0.11 Genl.
8 0.0005 Genl., r = 0.2 Genl.
9 0.005 Genl., r = 0.2 Genl.

Tables A-2 thr-ugh A-9 contain comparisons based on 23 parts distributed
among 30 damage incidents and a support period of 3,000 sorties. Discussions
and definitions of the parameter values and distributions are contained in the
technical section of this paper. The accuracy or measurement error of these
statistics is also discussed in the technical section of this paper.
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TABLE A-2

DBS-P VERSUS RBS-P
(Equal cost)

RBS cost goal for this comparison
RBS-P cost: DBS-P

Conf. Prob. DBS-P Prob. RBS-P
Series factor is better is better

1 No 0.08 0.53
Some 0.09 0.43
Full 0.11 0.38

2 No 0.08 0.74
Some 0.12 0.72
Full 0.20 0.47

3 No 0.12 0.44
Some 0.13 0.38
Full 0.13 0.33

4 No 0.12 0.76
Some 0.16 0.68
Full 0.26 0.47

5 No 0.11 0.46
Some 0.11 0.41
Full 0.15 0.32

6 No 0.13 0.75
Some 0.15 0.70
Full 0.24 0.46

7 No 0.14 0.49
Some 0.17 0.38
Full 0.21 0.32

8 No 0.14 0.46
Some 0.21 0.36
Full 0.19 0.34
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TABLE A-3

DBS-P VERSUS DBS-DI
(DBS-P cost < DBS-DI cost)

RBS cost goal for this comparison
Not applicable

Conf. Prob. DBS-P Prob. DBS-DI
Series factor is better is better

1 No 0.02 0.34
Some 0.01 0.34
Full 0.01 0.40

2 No 0.01 0.76
Some 0.00 0.73
Full 0.00 0.65

3 No 0.02 0.30
Some 0.02 0.33
Full 0.01 0.36

4 No 0.01 0.77
Some 0.00 0.76
Full 0.00 0.66

5 No 0.01 0.33
Some 0.01 0.29
Full 0.00 0.32

6 No 0.00 0.71
Some 0.00 0.61
Full 0.00 0.49

7 No 0.01 0.58
Some 0.01 0.51
Full 0.00 0.51

8 No 0.00 0.69
Some 0.00 0.62
Full 0.00 0.57
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TABLE A-4

DBS-P VERSUS RBS-DI
(DBS-P cost < RBS-DI cost)

RBS cost goal for this comparison
RBS-DI cost: DBS-DI

Conf. Prob. DBS-P Prob. RBS-DI
Series factor is better is better

1 No 0.07 0.60
Some 0.04 0.52
Full 0.04 0.47

2 No 0.02 0.89
Some 0.04 0.86
Full 0.03 0.65

3 No 0.05 0.55
Some 0.06 0.51
Full 0.06 0.47

4 No 0.03 0.88
Some 0.05 0.83
Full 0.06 0.65

5 No 0.05 0.53
Some 0.06 0.48
Full 0.09 0.40

6 No 0.04 0.87
Some 0.06 0.80
Full 0.12 0.55

7 No 0.03 0.66
Some 0.03 0.54
Full 0.02 0.51

8 No 0.01 0.71
Some 0.00 0.62
Full 0.00 0.57
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TABLE A-5

RBS-P VERSUS DBS-DI
(RBS-P cost < DBS-DI cost)

RBS cost goal for this comparison
RBS-P cost: DBS-P

Conf. Prob. RBS-P Prob. DBS-DI
Series factor is better is better

1 No 0.40 0.18
Some 0.29 0.22
Full 0.20 0.23

2 No 0.67 0.25
Some 0.58 0.25
Full 0.26 0.38

3 No 0.29 0.20
Some 0.24 0.25
Full 0.16 0.24

4 No 0.60 0.23
Some 0.49 0.30
Full 0.20 0.40

5 No 0.29 0.21
Some 0.28 0.21
Full 0.17 0.25

6 No 0.49 0.31
Some 0.46 0.32
Full 0.23 0.39

7 No 0.18 0.36
Some 0.11 0.40
Full 0.06 0.40

8 No 0.06 0.49
Some 0.03 0.49

Full 0.02 0.45
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TABLE A-6

RBS-P VERSUS RBS-DI
(RBS-P cost < RBS-DI cost)

RBS cost goal for this comparison
RBS-P cost: DBS-P

RBS-DI cost: DBS-DI

Conf. Prob. RBS-P Prob. RBS-DI
Series factor is better is better

1 No 0.08 0.27
Some 0.06 0.27
Full 0.02 0.26

2 No 0.09 0.66
Some 0.08 0.61
Ful 0.02 0.51

3 No 0.06 0.31
Some 0.04 0.33
Full 0.03 0.29

4 No 0.08 0.67
Some 0.06 0.66
Full 0.02 0.52

5 No 0.06 0.29
Some 0.06 0.24
Full 0.05 0.19

6 No 0.08 0.62
Some 0.14 0.50
Full 0.10 0.37

7 No 0.08 0.45
Some 0.06 0.42
Full 0.04 0.40

8 No 0.03 0.53
Some 0.01 0.51
Full 0.01 0.45
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TABLE A-7

DBS-DI VERSUS RBS-DI
(Equal cost)

RBS cost goal for this comparison
RBS-DI cost: DBS-DI

Conf. Prob. DBS-DI Prob. RBS-DI
Series factor is better is better

1 No 0.14 0.50
Some 0.13 0.37
Full 0.13 0.28

2 No 0.13 0.75
Some 0.12 0.70
Full 0.17 0.36

3 No 0.11 0.38
Some 0.11 . 0.34
Full 0.13 0.27

4 No 0.12 0.73
Some 0.15 0.68
Full 0.18 0.32

5 No 0.11 0.37
Some 0.12 0.34
Full 0.19 0.22

6 No 0.12 0.72
Some 0.16 0.61
Full 0.24 0.30

7 No 0.13 0.29
Some 0.11 0.18
Full 0.10 0.10

8 No 0.10 0.18
Some 0.09 0.10
Fun 0.05 0.06
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TABLE A-8

RBS-P VERSUS RBS-DI
(Equal cost, "low" cost goal)

RBS cost goal for this comparison
RBS-P cost: slightly higher than DBS-P
RBS-DI cost: slightly higher than DBS-P

Conf. Prob. RBS-P Prob. RBS-DI
Series factor is better is better

1 No 0.21 0.10
Some 0.17 0.09
Full 0.13 0.10

2 No 0.33 0.30
Some 0.28 0.21
Full 0.22 0.14

3 No 0.17 0.09
Some 0.17 0.10
Full 0.13 0.09

4 No 0.30 0.28
Some 0.26 0.26
Full 0.23 0.16

5 No 0.20 0.12
Some 0.25 0.09
Full 0.24 0.09

6 No 0.31 0.42
Some 0.38 0.30
Full 0.40 0.14

7 No 0.41 0.09
Some 0.32 0.11
Full 0.31 0.10

8 No 0.39 0.11
Some 0.38 0.10
Full 0.31 0.15
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TABLE A-9

RBS-P VERSUS RBS-DI
(Equal cost, "high" cost goal)

RBS cost goal for this comparison
RBS-P cost: slightly higher than DBS-DI
RBS-DI cost: slightly higher than DBS-DI

Conf. Prob. RBS-P Prob. RBS-DI
Series factor is better is better

1 No 0.15 0.10
Some 0.14 0.06
Full 0.08 0.05

2 No 0.33 0.29
Some 0.29 0.24
Full 0.12 0.08

3 No 0.18 0.07
Some 0.14 0.06
Full 0.10 0.06

4 No 0.27 0.28
Some 0.27 0.27
Full 0.15 0.11

5 No 0.25 0.08
Some 0.23 0.05
Full 0.18 0.05

6 No 0.33 0.42
Some 0.46 0.22
Full 0.32 0.09

7 No 0.31 0.08
Some 0.25 0.05
Full 0.14 0.03

8 No 0.23 0.02
Some 0.15 0.02
Full 0.07 0.01

A-10



APPENDIX B

AN EXAMPLE COMPARING RBS-PART
AND RBS-DAMAGE INCIDENT MODELS



APPENDIX B

AN EXAMPLE COMPARING RBS-PART
AND RBS-DAMAGE INCIDENT MODELS

Table B-1 presents a more detailed example of the reasons for the excellent
performance of the RBS-Part model in comparison to the RBS-Damage Incident
model. The table contains estimates made under the "series 1" conditions of
appendix A with some confidence in predicted damage rates. In particular, the
F-14 assemblies cost and part-to-damage-incident matrix was used. These pa-
rameters, taken from tables 4 and 5 of the main text, are repeated in columns
1 through 3 of table B-1. The other columns of table B-1 contain estimates of
stockpile characteristics and performance:

" Columns 4 through 6 of table B-1 contain comparisons of the stock lev-
els produced by the RBS-Damage Incident and RBS-Part models. For
example, the probability that part 1 is stocked to a lower level under RBS-
Damage Incident than RBS-Part was estimated to be 0.28. This is reported
under part number 1 in the column headed "DI<P."

* Columns 7 through 10 contain the probability of certain types of stockout
conditions. For example, the probability of a stockout of part 1 in the
RBS-Part stockpile is 0.09. This is reported under part number 1 in the
column labeled "P." The probability of a stockout for part 1 in the RBS-
Damage Incident stockpile that would not have resulted in a stockout in
the RBS-Part stockpile is 0.04. This is reported under part 1 in the column
labeled "DI, not P."

The RBS models tend to trade expensive items for additional protection in
inexpensive items. Intuitively, the RBS-Damage Incident model will find damage
incidents 26 through 28 attractive because of the low cost and the increase in
readiness produced by adding two parts to the stockpile simultaneously. Also
intuitively, the RBS-Damage Incident model will not find parts 1 through 4 at-
tractive because they are expensive both when considered separately and as part
of damage incidents 24 through 25. By this intuitive argument, RBS-Damage
Incident will tend to buy fewer of parts 1 through 4 and more of parts 15 through
20 than RBS-Part.

The intuitive argument above agrees with the estimates presented in ta-
ble B-1. Note that the RBS-Damage Incident model tends to stock fewer of
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the expensive parts and parts included in expensive damage incidents (parts 1
through 8) than the RBS-Part model, and to stock more inexpensive parts and
parts included in inexpensive damage incidents (particularly parts 15 through
20). Consequently, relative to the RBS-Part stockpile, the RBS-Damage Inci-
dent stockpile tends to experience more stockouts for expensive items and fewer
stockouts for the inexpensive items.

The RBS-Damage Incident stockpile generally does better than the RBS-Part
stockpile in meeting demands for inexpensive items. However, the RBS-Part
stockpile already does quite well in meeting demands for inexpensive items. In
relative terms, there is little difference in performance, with a probability of
around 0.01 of a stockout under the RBS-Part model that would be covered
under the RBS-Damage Incident model.

Both models have traded off expensive parts for additional coverage of in-
expensive items. Their performance in meeting demands for expensive parts is
relatively poor. However, the RBS-Part model performs better than the RBS-
Damage Incident model in this performance category. In relative terms, the
difference in performance is large, with up to a 0.04 probability of stockout un-
der the RBS-Damage Incident model that would be covered by the RBS-Part
model.

In summary, the RBS-Damage Incident model appears to carry the tendency
of trading off expensive items for inexpensive items a bit too far. Relative to the
RBS-Part model, the RBS-Damage Incident model appears to experience more
stockouts for expensive items. While it is true that the RBS-Damage Incident
model appears to experience fewer stockouts for inexpensive items, the RBS-

Part model also does well in meeting demands for inexpensive items. The overall
effect is that the RBS-Part model generally performs slightly better than the
RBS-Damage Incident model.
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TABLE B-1

DETAILED COMPARISON OF RBS-PART
AND RBS-DAMAGE INCIDENT

Comparison of stock levels Probability
(probability) of stockout

Cost
DI Part(s) _$ DI<P DI=P DI>P DI P DI, not P P, not DI

1 1 617 0.28 0.66 0.06 0.12 0.09 0.04 0.00
2 2 617 0.27 0.68 0.05 0.14 0.11 0.04 0.01
3 3 780 0.20 0.73 0.07 0.12 0.11 0.03 0.01
4 4 780 0.21 0.71 0.08 0.10 0.08 0.04 0.01
5 5 28 0.62 0.37 0.01 0.04 0.01 0.02 0.00
6 6 28 0.61 0.39 0.01 0.02 0.01 0.01 0.00
7 7 21 0.66 0.34 0.01 0.03 0.01 0.02 0.00
8 8 21 0.68 0.32 0.00 0.02 0.01 0.01 0.00
9 9 445 0.02 0.59 0.39 0.06 0.07 0.00 0.02

10 10 445 0.04 0.65 0.31 0.06 0.08 0.00 0.02
11 11 106 0.16 0.62 0.22 0.02 0.01 0.01 0.00
12 12 132 0.12 0.70 0.19 0.03 0.03 0.01 0.00
13 13 42 0.25 0.59 0.15 0.02 0.01 0.01 0.00
14 14 42 0.23 0.65 0.11 0.01 0.01 0.01 0.00
15 15 43 0.00 0.14 0.86 0.00 0.01 0.00 0.01
16 16 109 0.00 0.20 0.80 0.01 0.02 0.00 0.01
17 17 30 0.01 0.17 0.82 0.00 0.01 0.00 0.01
18 18 30 0.02 0.31 0.67 0.01 0.00 0.00 0.00
19 19 143 0.01 0.22 0.77 0.01 0.02 0.00 0.01
20 20 28 0.02 0.40 0.58 0.00 0.00 0.00 0.00
21 21 92 0.09 0.90 0.01 0.03 0.03 0.00 0.00
22 22 11 0.37 0.49 0.14 0.01 0.00 0.01 0.00
23 23 35 0.08 0.91 0.01 0.02 0.01 0.00 0.00
24 1,3,5,7 1,446
25 2,4,6,8 1,446
26 19,20 171
27 15,17 73
28 16,18 139
29 9,11,13,22 604
30 10,12,14,22 630

I"
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APPENDIX C

LISTING OF MAIN COMPUTER PROGRAM

"ain: procedure options(main);

/**. problem definition statements*.e...... .... /

declare
printintermed character(88) varying.
printrandno character(SO) varying,
didimension fixed binary.
partdimension fixed binary.
sortiedimension fixed binary,
samplesize fixed binary.
scalefactor float binary,
conffactor float binary.
seed fixed binary. /* random number seed .

outfile file.
outfile..name char(89) varying,
1 outrec.

2 out-i picture 'zz9'.
2 out-.connl picture 'zzzzg*.
2 out..cann2 picture 'zzzz9'.
2 out-.cann3 picture 'zzzzg',
2 out-.cann4 picture 'zzzzg',
2 out...costl picture 'zzzzzzzgv.9'.
2 out-.cost2 picture 'zzzzzzzgv.91,
2 out-cost3 picture 'zzzzzzzgv.9'.
2 out-.cost4 picture *zzzzzzzgv.9'.

p-.accept-.part float binary.

cost-phigh float binary.
cost-low.j float binary.
cost-l.ow.u float binary.
costhigh.l float binary.
cost-.high.u float binary;

get list(pfintintermed) options(prampt('printintermed (Y/N)'));
get skip list(printrandno) options(prompt('printrandno (Y/N)'));
get skip list(didimonsion) options(prampt('didlmension'));
get skip list(partdimension) options(prompt('partdimension'));
get skip liet(sortiedimension) options(prampt('uortledimension'));
get skip liit samplesize) options(prompt('samplesize*));
get skip list (ecalefactor) optione(prompt('ecalefactor'));
get skip list (conffactor) options(prompt('conffactor'));
get skip listlsed) option (prompt('seed (-I for aytem seed)'));
get skip list (out flle.name) option: prompt 'outfile..name'))
get skip list (p_.accept-.part) option prompt 'p.accept..part'))
get skip listi cot-.phigh) options(prompt('cost-.phigh'))

get kip ist cost.low.l) ptinprompt('costj.ow.l'))
get skip list (cost-l.ow..u) optionsprompt('cost-low-u'));
get skip list(cost-.high-1) options(prompt('cost-high-i'));
get skip list(cst..high.u) opt ions(propt('cst-high-u').);

put page list ('echo problem definition variables');
put skip list (didimension,'didimension');
put skip list (partdimension,'partdimension');
put skip list(sortiedimension.'sortiedimension');
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put skip list(samplesize.'samPlesize')';
put skip list(soalefactor.'scalefactor');
put skip list(conffactor.'conffactor'):
put skip list(outfile...nme.outfil..name');
put skip list(p..accept-.part,'p..accep-part');
put skip list(cost-.phigh.'cost-.phigh');
put skip list(cost..jowl.*costlow...);
put skip list(costlow-u.'cost..lowu1;
put skip list(coshighj.,'costhighjl'):
put skip list(cost..high..u'costhigh.u'):

begin;

open file(outfile) title(outfile..name) output record

environment(fixe..length.records.maximum..xecord-size(63));

/..declaration of global: variables *e..................

declare
di(partdlmension.didimension) fixed binary. /* part-di cross reference .
c(partdimension) float binary. /* cost vector */

ra(didimension) float binary(113). /. actual rates *
rp(didimension) float binary(113). /* predicted rates *
rk(sortiedimension) float binary(113). /* damage outcome *

inset external entry (fixed binary). /. set seed *
rnget external entry (fixed binary). /* get seed .
rnunf external entry returno(floot binary); /* random number e

if seed > 0 then call rnset(seed);
call rnget(seed):
put page;
put skip iist('random number seed: '.seed):.

/*****so main routine ....... e..............
leseoes monte carlo integration e...e............

declare
i fixed binary.

sl(partdimension) fixed binary. /* spares level model 1I*
s2(partdimenslon) fixed binary. /* spares level model 2 *
83( portdimension) fixed binary. /. spares level model 3 .
s4(pcrtdlmsne ion) fixed binary. /* spares level model 4 *
k(dldimenslon) fixed binary. /* damage outcome */
aenni fixed bina ry. /* oann cc for model 1I*
cann2 fixed binary,./ cann ac for model 2 *
cann3 fixed binary. /* cann ac for model 3 *
cann4 fixed binary. /* cann ac for model 4 *
COWt float binary. /* cost of model I parts *
cost2 float bina ry. /* cost of model 2 parts .
aost3 float binary. /0 cost of model 3 parts *
cost4 float binary; /* cost of model 4 parts *

if printintermed Y' then put skip(3) list('intermediate results');
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do i - I to samplesize;

call getcostvect;
coil getdimatrix;
call gotdamagevect;
call s..aso(SI);
Call coesPUtecost(SIcostI);
call s..rbs(s2.costI);
call computecost(s2.cost2);
call s.asodi(s3);
call computecost(s3,cost3):
call s..rbsdi(s4.cost3);
call computecost(s4.cout4);
call camputek(k);
call computecann(k~sl .conni);
call computeconn(k.s2.conn2);
call computeconn(k.s3,conn3);
call computecann(k.s4.cann4);

if print intermed - Y
then
do;

put skip(2);
put :kip list(1i: '.i);
put skip list sl: ',*I);
put skip list(es2: *.s2);

put skip list('s3: ',93);
put skip list('s4: ',s4);
put skip list('coatl: ',costi);.
put skip list('cost2: .,cost2);
put skip list('cost3: '.cost3);
put skip list 'cost4: '.cost4):
put skip listik: '.k);
put skip list('cannI:'.cannl);
put skip list('conn2:,.cann2);
put skip list('conn3:'.cann3);
put skip list(*cann4:'.cann4);

end;

out-j - 1;
out..connl - canni;
out...cann2 - cann2;
out~cann3 - cann3;
out..cann4 - cann4;
out-..ostl - COWt;
out~coet2 - cost2;
out..cost3 - coet3;
out..cost4 - coet4;
write flle(outfil.) from(outrac);

end;

stop;

computek: procedur.(k);

C-3



declare
k(-) fixed binary, /* damage outcome *

i fixed binary.
j fixed binary,
r float binary;

do i - 1 to didimension;
k(i) - B;

end;
do i -I to sortledlmenelon;

r -rk(l);

do wh.ie(r > 0);
j j + 1;
r -r - ra(j);

end;
k(j) -k(j) + 1;

end;

end computek;

/*so*. compute number of cannibalized aircraft ss/

camputicann: procedure(k.s.nc);

declare
3(0) fixed binary. /* spores level .
k(*) fixed binary. /* damage outcome .
ne fixed binary, /* number of canned ac .

fixed binary.
j fixed binary.

dp fixed binary;

nc - 0;
do i - 1 to partdimension;

dP -0;
do j - 1 to didimension;

dp - dp + k(j)edi(i.j);
end;
nc - max(nc.dp" (i));

end;

end computecann;

getdlmatrix: procedure;

declare
accoptdi bit(1).
rvoct(partdimension.2:dldimonsion) float binary.
i fixed binary.
j fixed binary;

/* damage-part cross refersnce di(part.damage incident) *
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/* logic assumes damage incident I is the 'no damage' event *

do I - I to partdimension:
di(i.1) - 6;

end;

do j - 2 to didimension;
occeptdi - Gb
do while(tacceptdi);
do I - I to partdimension;

rvect(i~j) - rnunfo;
if rvect(i.j) <p...accep-part

then
do;

di(i.j) - 1;

acceptdi - 'b

else di(i~j) - 0;
end;
end;

end;

if printrandno -'Y
then

do i I to partdimension;
j 1;
put skip I ist(*i j...di(i .j) *j ,j.di(i,j));
do j - 2 to didimension;
put skip list('i.j.rvect(i.j).di(i.j)'.i.j.rvect(i *j),di(i~j));

end;
end;

end getdimatrix;

getcostvect: procedure;

/* cost vector c(part) *

declare
rvect(2.partdimension) float binary.

I fixed binary;

do I - I to partdimension;
rvect(1,i) - rnunf8;
rv ct(2.i) - rnunf(0

nd;
do I - I to partdimension;

If rvect(1iJ) < cost-phigh
then

c(i) - cost-.high-j + (cost-.high.u-coshighj)srvect(2,i);

elec(i) = cost-low-I + (cost-l.ow-.u-costlow..l)rvect(2.i);
end;

if printrandno - I
then
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do i - I to partdimension;
put skip I ist(1 .r(*.i).coet(l): *.i.rvect(1.i).rvect(2.i).c(i));

end;

end getcostvect;

fe..random damage rote vector generator .... **

getdomagoect: procedure:

/* logic assumes damage incident 1 corresponds to no damage *

declaore
rvect(didimension-1) float binary.

i fixed binary;

I.rp ./
do i - 1 to didimension-1;

rvect(i) - rnunfo;

end;,rp(1) -1;

do i -2 to didimansion;
rp(i) - scalefactorsrvect(i-1);
rp(1) - rp(1) - rp(i);

end;
if printrandno - Y

then
do;

put skip list('rp(I),.rp(1));
do i - 2 to didimension;

put skip list('i.r.rp: '.I~rvect(i-1).rp(i));
end;

end;

/* ra - (1-conffactor)sra + conffactororp) e

do 1 - 1 to didimension-1;
rvect(i) - rnunfo;

end;

do I - 21to dldimension;
ra(i) - secefactororvect(i-1);
ra (I) - (1-conffactor)sra(i) + conffactor.rp(i);
ra(I) - ro(1) - ra(I);

end;
if printrandno - Y

then
do;

put skip llst('ra(I)'.ra(I));
do I - 2 to didlmenslon;

put skip list(1i.r.ra: '.i.rvect(i-1).ra(i));
end;.

end;
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/* rk/

do I -I to sortiedimension;
rk(i) - rnunf();

end:.

if printrandno - Y
then

do i - 1 to sortiedimension;
put skip list('i.rk: '.i.rk(i));

end:

end getdamagevoct;

/* aso spares policy implementation *

s..aso: procedure(s);

Zreplace safetyfactor by *.9;

declare

a(*) fixed binary. I.spares level *

r-.part(partdim~nsion) float binary(113). /. part damage rates *

pn fixed binary.
j fixed binary.
mis float binary(113).
bb float biriary(113).
tt float binary(113):

/. build up damage rates for parts .

do pn - I to partdimension;
r..part(pn) - 6;
do j - I to didimension;

r-.part(pn) - r...part(pn) + di(pn.j)*rp(j);
end;

end;

/s built aso stock level .

do pn - I to partdimension;
If r-.part(pn) t- I
then

do;
mm - r-.part(pn)/(1-r..part(pn));
bb - (1-r-.part(pn))..sortlodimension;
tt - bb;
s(pn) - 0;
do while(bb < safetyfactor);

s(pn) - s(pn) + 1;
tt - ttem.o(srtiedmenion.1-s(pn))/s(pn);
bb - bb + tt;

end;
end;

elsec
F do;
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put skip llet('trivial case...2.r-.part):
stop;

end;
end;

ed 
aso;

/* aoo damage incident spares policy implementation 5

s....aodi: procedure(s);

%replace safetyfactor by *.9;

declare
a(*) fixed binary, /* spares level .

dis(2:didimension) fixed binary.
din fixed binary.
j fixed binary.
M float binary(113).
bb float binary(113).
tt float binary (113):

/* built ago damage incident stock level */
/0 assumes damage incident I is the 'no damage' event .

do din - 2 to didimension;
If rp(dln) tmI
then

do;
- - rp(din)/(1-rp(din)):
bb -(1-rp(din))..sortiodimeneion;
tt -bb:
dls(din) - 0;
do while(bb < safetyfactor):

dls(din) - dis(din) + 1;
tt - tt~mm.(sortiedlmension+l-dis(din))/dis(din);
bb - bb + tt;

end;
end;

elIse
do;

put skip llst('trivlal case...'*.rp);
stop:

end;
end;

do j - I to partdimension;
SOj) -69;
do din - 2 to didimenslon;

o(j) - 9(j) + dl(j.dln)*dls(dln);
end;

end;.
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end s-asodl;

3 /. rbe spares policy implementation S

s..rbe: procedure(s.costgoa I);

declare
a(*) fixed binary.
couigoal float binary.

r-.part(partdimension) float binary(113).

fixed binary.
m(partdimension) float blnary(113).
bb(partdimen i on) float binary(113).
tt(partdimension) float bina ry(113).
pn fixed binary.

bestpn fixed binary.
bestratio float binary(113).
currdelta float bina ry(113).
currratio float blnary(113).
cost float binary:

/* initialize .

cost - 0

/* build up damage rates for parts .

do pn -I to partdlmension;
r-.part(pn) a 0;
do j - 1 to didimension;

r-.part(pn) - r-.part(pn) + di(pn.j)srp(j);
end;

end;

do pn - 11 to partdimension:
s(pn) - 6;
If r-.prt(pn) t- 1

then
do;

m(pn) - .part(pn)/(1-r..part(pn));
bb pn) (1-r-.part(pn))sortiedlmenslon;
tt (pn) -bb(pn);

end;

do:
put skip llet('Trlvlal problem: '.r...prt);
stop;

end;
end;

/* build rbs level *
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do while(cost < costgool);
currdelta - tt(1).m(i).(sortiedimension-s(1))/(s(1)+1);
boayn - 1:
bestratia - currdelta/(c(1)*bb(1));
do pn - 2 to partdimension;

currdelta - tt(pn).m(pn).(sortiedimension-s(pn))/(s(pn)+l);
currratio - currdelta/(c(pn)sbb(pn));
if currratio > bestratio

then
do;

bestpn - pn;
bestratio - currrat io;

end;
end;
cost - cost + c(bestpn);
If cost <- costgoal

then
do;

tt(bestpn) - tt(bestpn).m(bestpn)*(sortiedimension-s(bestpn))/(s(bestpn)+l);
bb(bestpn) - bb(bestpn) + tt(bestpn):
s(bestpn) - 9(bestpn) + 1;

end;
end;

end s..rbu;

/* rbs damage incident policy implementation *

a-rbedi: procedure(s.costgoal);

declare
g(O) fixed binary.
costgoal float binary.

dis(2:didimension) fixed binary,

j fixed, binary.
m(2:dldlmensIon) float blnary(113).
bb(2:dldimension) float binary(113).
tt (2:didimenslon) float binary8(13).
din fixed binary.

bestdin fixed binary.
bestratio float binary(113).
currdelta float binary(113)
currratlo float blnary(113).
cost float binary.
cdl(2:dldlmension) float binary;

/* Initialize S

cost w-6;

/* initialize cdl *

do din -2 to didimenslon;
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cdi(din) - 0;
do jc- I to partdimension;

ci(din) -cdi(din) + di(J.din)oc(j);
end;

end;

I.assumes damage incident I is the 'no damage' event *

do din - 2 to didimension;
dis(din) - 0;
if rp(dln) t- I

then
do;

mm(din) - rp(dln)/(l-rp(dln));
bb(din) -(1-rp(din))oosortiodimension;
tt(din) - bb(din);

end.
elSe

do;
put skip list('Trivlal problem: '.rp);
stop;

end;

end;
/* build rbsdi level .

do whlle(cost < colatgoal);
currdelta - t.t(2).mm(2).(sortiedimension-dis(2))/(dis(2)+l):

* bestdin - 2:
* bestratio - currdelta/(cdi(2)obb(2));

do din - 2 to didimension;
currdel to - tt(din).mm(din).(sort iedimension-dis(din))/(dis(din)+I);
currratlo - currdelta/(cdi(din)*bb(dln));
If currratio > bestratlo

then
do;

bestdin - din;
bestratio - currratio;

end;
end;
cost - cost + cdi(bastdln);
If cost <- costgool

then
do;

tt (bestdln) - tt(bestdln).m(bestdin).(sortiedimenslon-dis(bestdin))/(dis(bestdln)+l);
bb(bestdin) - bb(bestdin) +. tt(bestdin);
die(bestdin) - die(bestdln) + 1;

end.
end;

do j - I to partdimension;
90j) - 6;
do din - 2 to didimenslon;

3 so(j) - 9(j) + di(j.din)*dls(dln);*
end;

end;

end s..rbsdl;
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camputecost: procedure(s.cost);

declare
i fixed binary.
s(*) fixed binary,
cost float binary;

/0 compute cost */
cost - 0;
do i - I to partdlimension;

cost - cost + S(i)*c(i);
end;

end computecost;

end; /* begin 'I

end main;
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